M1LA2



Percobaan 4

1. Prosedur[Kembali]

1. Buat rangkaian dipapan rangkaian sesuai dengan percobaan yang dilakukan pada modul.
2. Konfigurasi Pin pada stm32 cube ide dan lakukan programming.
3. Connect STM 32 dengan laptop
4. Jalankan program
5. Selesai.

2. Hardware dan Diagram Blok[Kembali]

Hardware :

  • STM32
  • Push button



  • LED RGB



  • Resistor

  • Buzzer


  • IR Sensor


Diagram Blok


3. Rangkaian Simulasi[Kembali]

  • Rangkaian 



  • Prinsip Kerja 

Rangkaian ini terdiri dari touch sensor dan sensor PIR sebagai input serta satu LED RGB sebagai output. Setiap input berfungsi untuk mengontrol LED RGB sesuai dengan logika yang telah diprogram. Kontrol sistem ini dilakukan menggunakan dev board STM32, yang bertugas membaca input dan mengaktifkan output berdasarkan kondisi yang diterima.

Ketika touch dan pir sensor tidak mendeteksi, RGB merah akan aktif. lalu ketika PIR sensor mendeteksi gerakan, RGB biru akan aktif, dan Ketika touch sensor disentuh maka RGB hijauu akan aktif 3 detik dan mati 3 detik berulang, Sedangkan Saat touch sensor disentuh dan sensor PIR mendeteksi objek, sinyal input high, sehingga RGB biru aktif dan cyan aktif 3 detik dan mati 3 detik hal ini dikarenakan touch sensor mengeluarkan output hijau selama 3 detik sedangkan PIR mengeluarkan biru olehkarena itu output keduanya akan cyan.

4. Flowchart dan Listing Program[Kembali]

  • Flowchart


  • Listing Program

/* USER CODE BEGIN Header */

/**

******************************************************************************

* @file : main.c

* @brief : Main program body

******************************************************************************

* @attention

*

* Copyright (c) 2025 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

******************************************************************************

*/

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"


/* Private includes ----------------------------------------------------------*/

/* USER CODE BEGIN Includes */


/* USER CODE END Includes */


/* Private typedef -----------------------------------------------------------*/

/* USER CODE BEGIN PTD */


/* USER CODE END PTD */


/* Private define ------------------------------------------------------------*/

/* USER CODE BEGIN PD */


/* USER CODE END PD */


/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PM */


/* USER CODE END PM */


/* Private variables ---------------------------------------------------------*/


/* USER CODE BEGIN PV */


/* USER CODE END PV */


/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

/* USER CODE BEGIN PFP */


/* USER CODE END PFP */


/* Private user code ---------------------------------------------------------*/

/* USER CODE BEGIN 0 */


/* USER CODE END 0 */


/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{


/* USER CODE BEGIN 1 */


/* USER CODE END 1 */


/* MCU Configuration--------------------------------------------------------*/


/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();


/* USER CODE BEGIN Init */


/* USER CODE END Init */


/* Configure the system clock */

SystemClock_Config();


/* USER CODE BEGIN SysInit */


/* USER CODE END SysInit */


/* Initialize all configured peripherals */

MX_GPIO_Init();

/* USER CODE BEGIN 2 */


/* USER CODE END 2 */


/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

uint8_t pir_status = HAL_GPIO_ReadPin(GPIOB, pir_Pin);

uint8_t touch_status = HAL_GPIO_ReadPin(GPIOB, touch_Pin);

HAL_GPIO_WritePin(blue_GPIO_Port, blue_Pin, pir_status);

if (touch_status == GPIO_PIN_SET) {

HAL_GPIO_WritePin(GPIOA, red_Pin, GPIO_PIN_RESET);

HAL_GPIO_WritePin(GPIOA, green_Pin, GPIO_PIN_SET);

HAL_Delay(3000);

HAL_GPIO_WritePin(GPIOA, green_Pin, GPIO_PIN_RESET);

HAL_Delay(3000);

} else {

if (pir_status == GPIO_PIN_RESET && touch_status == GPIO_PIN_RESET) {

HAL_GPIO_WritePin(GPIOA, red_Pin, GPIO_PIN_SET);

} else {

HAL_GPIO_WritePin(GPIOA, red_Pin, GPIO_PIN_RESET);

}

}

}

/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */



/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};


/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}


/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;


if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

{

Error_Handler();

}

}


/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */


/* USER CODE END MX_GPIO_Init_1 */


/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOD_CLK_ENABLE();

__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();


/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(GPIOA, red_Pin|green_Pin, GPIO_PIN_RESET);


/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(blue_GPIO_Port, blue_Pin, GPIO_PIN_RESET);


/*Configure GPIO pins : red_Pin green_Pin */

GPIO_InitStruct.Pin = red_Pin|green_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);


/*Configure GPIO pin : blue_Pin */

GPIO_InitStruct.Pin = blue_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(blue_GPIO_Port, &GPIO_InitStruct);


/*Configure GPIO pins : pir_Pin touch_Pin */

GPIO_InitStruct.Pin = pir_Pin|touch_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);


/* USER CODE BEGIN MX_GPIO_Init_2 */


/* USER CODE END MX_GPIO_Init_2 */

}


/* USER CODE BEGIN 4 */


/* USER CODE END 4 */


/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}


#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */


5. Video Demo[Kembali]






6. Analisa[Kembali]

     



7. Download File[Kembali]

HTML [Download]
Listing Program [Download]
Video Simulasi [Download]  
  









Komentar

Postingan populer dari blog ini

Modul 1 Prak SIsDIg

Modul 2 PrakSisdig

Tugas Besarr